skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cartigny, Pierre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unraveling the origin(s) of carbon on Earth has remained challenging, not only because of the multiple isotopic fractionation episodes that may have occurred during planet formation processes but also because the end point of these processes, the current isotopic value of Earth’s deep carbon reservoirs remains poorly constrained. Here, we present carbon isotopic measurements on rare undegassed mid-ocean ridge basalts from the Pacific, Atlantic, and Arctic Oceans that have preserved the isotopic signature of their mantle source. We find that Earth’s present-day convecting upper mantle has variable δ13C value from ~−10 to −4‰, significantly different from the δ13C value of peridotitic diamonds and with the highest values being restricted to the Atlantic. Evidence for significant mantle heterogeneity contrasts with previous assumptions and its origin remains puzzling being uncorrelated with geochemical markers associated with either subduction and surficial recycling processes or lower mantle contributions. The data do not preclude other causes such as primordial mantle heterogeneity. We suggest that the δ13C value of the bulk silicate Earth may need to be revised. 
    more » « less
    Free, publicly-accessible full text available June 24, 2026
  2. Volcanic rocks erupted among Pitcairn seamounts sample a mantle plume that exhibits an extreme Enriched Mantle-1 signature. The origin of this peculiar mantle endmember remains contentious, and could involve the recycling of marine sediments of Archean or Proterozoic ages, delaminated units from the lower continental crust, or metasomatized peridotites from a lithospheric mantle. Here, we report the sulfur multi-isotopic signature (32S, 33S, 34S, 36S) of 15 fresh submarine basaltic glasses from three Pitcairn seamounts. We observe evidence for magmatic degassing of sulfur from melts erupted ∼2,000 meters below seawater level (mbsl). Sulfur concentrations are correlated with eruption depth, and range between 1300 ppm S (collected ∼ 2,500 mbsl) and 600 ppm S (∼2,000 mbsl). The δ34S values can be accounted for under equilibrium isotope fractionation during degassing, with αgas-melt between 1.0020 and 1.0001 and starting δ34S values between −0.9‰ and +0.6‰. The δ34S estimates are similar or higher than MORB signatures, suggesting the contribution of recycled sulfur with a ∼ 1‰ 34S enrichment compared to the Pacific upper mantle. The Δ33S and Δ36S signatures average at +0.024±0.007‰ and +0.02±0.07‰ vs. CDT, respectively (all 1σ). Only Δ33S is statistically different from MORB, by +0.02‰. The Δ33S enrichment is invariant across degassing and sulfide segregation. We suggest it reflects a mantle source enrichment rather than a high-temperature fractionation of S in the basalts. Despite the small magnitude of the 33S-36S variations, our data require a substantial amount of recycled sulfur overwhelm the Pitcairn mantle source. We show that models involving metasomatized peridotites, lower crust units, or Archean sediments, may be viable, but are restricted to narrow sets of circumstances. Instead, scenarios involving the contribution of Proterozoic marine sediments appear to be the most parsimonious explanation for the EM-1 signature at Pitcairn. 
    more » « less